Short Proofs for Slow Consistency

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow consistency

The fact that “natural” theories, i.e. theories which have something like an “idea” to them, are almost always linearly ordered with regard to logical strength has been called one of the great mysteries of the foundation of mathematics. However, one easily establishes the existence of theories with incomparable logical strengths using self-reference (Rosser-style). As a result, PA + Con(PA) is ...

متن کامل

Propositional Consistency Proofs

Partial consistency statements can be expressed as polynomial-size propositional formulas. Frege proof systems have polynomial-size partial self-consistency proofs. Frege proof systems have polynomialsize proofs of partial consistency of extended Frege proof systems if and only if Frege proof systems polynomially simulate extended Frege proof systems. We give a new proof of Reckhow’s theorem th...

متن کامل

Short proofs for interval digraphs

We give short proofs of the adjacency matrix characterizations of interval digraphs and unit interval digraphs.

متن کامل

Short Discreet Proofs

We show how to produce short proofs of theorems such that a distrusting Verifier can be convinced that the theorem is true yet obtains no information about the proof itself. The proofs are non-interactive provided that the quadratic residuosity bit commitment scheme is available to the Prover and Verifier. For typical applications, the proofs are short enough to fit on a floppy disk.

متن کامل

Very Short Primality Proofs

It is shown that every prime p has a proof of its primality of length 0(logp) multiplications modulo p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 2020

ISSN: 0029-4527

DOI: 10.1215/00294527-2019-0031